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Wave Equation

Continuous PDE: xmin ≤ x ≤ xmax, with a = constant

∂u(x, t)

∂t
+ a

∂u(x, t)

∂x
= 0 (1)

1. PDE Theory requires an Initial Condition (IC) and Boundary

Conditions (BC)

2. IC: u(x, 0) = g(x), an arbitrary function of x, must satisfy BC

3. BC: The first order PDE in x requires only one BC, satisfying IC

(a) If a ≥ 0, then u(xmin, t) = l(t)

(b) If a < 0, then u(xmax, t) = r(t)
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Discussion of BC: Non-Periodic

1. Scalar quantity u is given on one boundary, corresponding to a

wave entering the domain thru this “inflow” boundary.

(a) No boundary condition is specified at the opposite side, the

“outflow” boundary.

(b) This is consistent in terms of the well-posed-ness of a

first-order PDE.

(c) Hence the wave leaves the domain through the outflow

boundary without distortion or reflection.

(d) Note that the left-hand boundary is the inflow boundary

when a is positive, while the right-hand boundary is the

inflow boundary when a is negative.
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Discussion of BC: Periodic

1. The flow being simulated is periodic.

(a) At any given time, what enters on one side of the domain

must be the same as that which is leaving on the other.

(b) This is referred to as the biconvection problem.

(c) It is the simplest to study and serves to illustrate many of the

basic properties of numerical methods applied to problems

involving convection, without special consideration of

boundaries.

(d) We pay a great deal of attention to it in the initial lectures.
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Periodic Wave Equation

1. Next we study the properties of the Periodic Wave Equation

∂u(x, t)

∂t
+ a

∂u(x, t)

∂x
= 0 , 0 ≤ x ≤ 2π (2)

2. BC: u(0, t) = u(2π, t)

3. IC: u(x, 0) = g(x), g(0) = g(2π)
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Periodic Wave Form

1. The general solution to Eq.1 is:

u(x, t) = g(x− at)

with g(x) satisfying the IC

2. We will choose a specific form of the solution for periodic flow

3. Fourier Series: An Arbitrary Periodic (Harmonic) Function Can

Be Represented By A Fourier Series

g(x) =
M∑

m=−N
fm(0)eiκmx =

∑
m

gm(x) (3)
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Examples of Periodic Fourier Functions

1. Simple Sine

sin(x) =
eix − e−ix

2i
M,N = 1, κ1 = 1, κ−1 = −1

f1(0) =
1

2i
, f−1(0) =

−1

2i

2. Sum of Sine and Cosine

2.0sin(3x) + 0.1cos(5x) = 2.0
e3ix − e−3ix

2i
+ 0.1

e5ix + e−5ix

2
M,N = 5, κ3 = 3, κ−3 = −3, κ5 = 5, κ−5 = −5,

f3(0) =
2.0

2i
, f−3 =

−2.0

2i
, f5(0) =

0.1

2
, f−5 =

0.1

2
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Linear Superposition Theory

1. Equation 1 is a linear equation in u(x, t) and must satisfy an

arbitrary g(x) from Eq.3

2. By the Theory of Linear Superposition, given two or more

solutions, e.g., u1(x, t), u2(x, t)

(a) If u1(x, t) Satisfies Eq.1 and u2(x, t) Satisfies Eq.1

(b) Then: The sum of u(x, t) = c1u1(x, t) + c2u2(x, t) also satisfies

Eq.1, where c1 and c2 are arbritary constants.
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Generalize Solution

1. Eq.3 is a sum of various periodic functions eiκmx, each of which

taken separately leads to general solutions um(x, t) = gm(x− at)

(a) Simplify and generalize our solutions class by choosing the

general g(x) = eiκx

(b) Consider each wave component separately, (ie. general κ)

2. General Solution for Periodic IC

u(x, t) =
M∑

m=−N
fm(0)eiκm(x−at) (4)
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Separation of Variable Solution of Wave Equation

1. Using separation of variables assuming a general form

u(x, t) = eiκxf(t)

(arbitrary κ)

2. Apply the general result ∂u(x,t)
∂x = iκ u(x, t) to Eq.2,

∂u(x, t)

∂t
+ a

∂u(x, t)

∂x
= 0

∂eiκxf(t)

∂t
+ aiκeiκxf(t) = 0

10



PDE - ODE

1. The ODE for f(t) is

∂f(t)

∂t
+ a iκ f(t) = 0

with solution

f(t) = f(0)e−aik t

giving

u(x, t) = ceiκxe−aiκ t, c = f(0)

2. So the General Solution to Eq.2, (for each κ),

u(x, t) = ceiκ(x−a t) (5)
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General Solution

u(x, t) =
∑
m

cme
iκ(x−a t) (6)

1. This will be the exact solution which we will use to evaluate the

effects of

(a) Approximating ∂u
∂x with Numerical Finite Differences.

(b) Approximating ∂u
∂t with Various Time Advance Schemes.
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